Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield?
نویسندگان
چکیده
Debate still surrounds the physiological roles of the alternative respiratory enzymes found in many fungi and plants. It has been proposed that alternative NADH:ubiquinone oxidoreductases (NADH dehydrogenases) may protect against oxidative stress, conversely, elevated activity of these enzymes has been linked to senescence. Here we show that inhibition of these enzymes in a fungal protein expression system (Aspergillus niger) leads to significantly enhanced specific growth rate, substrate uptake, carbon dioxide evolution, higher protein content, and more efficient use of substrates. These findings are consistent with a protective role of the NADH dehydrogenases against oxidative stress, thus, when electron flow via these enzymes is blocked, flux through the main respiratory pathway rises, leading to enhanced ATP generation. We anticipate that our findings will stimulate further studies in fungal and plant cultures leading to significant improvements in these expression systems, and to deeper insights into the cellular roles of alternative respiration.
منابع مشابه
The internal alternative NADH dehydrogenase of Neurospora crassa mitochondria.
An open reading frame homologous with genes of non-proton-pumping NADH dehydrogenases was identified in the genome of Neurospora crassa. The 57 kDa NADH:ubiquinone oxidoreductase acts as internal (alternative) respiratory NADH dehydrogenase (NDI1) in the fungal mitochondria. The precursor polypeptide includes a pre-sequence of 31 amino acids, and the mature enzyme comprises one FAD molecule as ...
متن کاملGrowth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases.
Both apicomplexan parasites Toxoplasma gondii and Plasmodium falciparum lack type I NADH dehydrogenases (complex I) but instead carry alternative (type II) NADH dehydrogenases, which are absent in mammalian cells and are thus considered promising antimicrobial drug targets. The quinolone-like compound 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ) was recently described as a high-affinity inhibitor o...
متن کاملGrowth inhibition of Toxoplasma gondii and Plasmodium falciparum by Nanomolar Concentrations of HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone): a High Affinity Inhibitor of Alternative (type II) NADH Dehydrogenases
Both apicomplexan parasites Toxoplasma gondii and Plasmodium falciparum lack type I NADH dehydrogenases (complex I), but instead encode alternative (type II) NADH dehydrogenases, which are absent in mammalian cells and are thus considered as promising antimicrobial drug targets. The quinolone-like compound 1-hydroxy-2-dodecyl-4(1)quinolone (HDQ) was recently 5 described as a high affinity inhib...
متن کاملAm Fungi and Mine Spoil Consortium: a Microbial Approach for Enhancing Proso Millet Biomass and Yield
Proso millet (Panicum miliaceum L.) was grown with inoculation of four indigenous AM fungal species in presence of different levels of mine spoil under green house conditions. The growth parameters such as biomass production, grain yield, per cent root infection and number of viable AM fungal spores in the rhizosphere of the mycorrhizal proso millet grown with 25% mine spoil were higher over th...
متن کاملIn vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria.
During respiratory glucose dissimilation, eukaryotes produce cytosolic NADH via glycolysis. This NADH has to be reoxidized outside the mitochondria, because the mitochondrial inner membrane is impermeable to NADH. In Saccharomyces cerevisiae, this may involve external NADH dehydrogenases (Nde1p or Nde2p) and/or a glycerol-3-phosphate shuttle consisting of soluble (Gpd1p or Gpd2p) and membrane-b...
متن کامل